Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Diabetes ; 73(5): 728-742, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387030

RESUMO

The ß-cell plays a crucial role in the pathogenesis of type 1 diabetes, in part through the posttranslational modification of self-proteins by biochemical processes such as deamidation. These neoantigens are potential triggers for breaking immune tolerance. We report the detection by LC-MS/MS of 16 novel Gln and 27 novel Asn deamidations in 14 disease-related proteins within inflammatory cytokine-stressed human islets of Langerhans. T-cell clones responsive against one Gln- and three Asn-deamidated peptides could be isolated from peripheral blood of individuals with type 1 diabetes. Ex vivo HLA class II tetramer staining detected higher T-cell frequencies in individuals with the disease compared with control individuals. Furthermore, there was a positive correlation between the frequencies of T cells specific for deamidated peptides, insulin antibody levels at diagnosis, and duration of disease. These results highlight that stressed human islets are prone to enzymatic and biochemical deamidation and suggest that both Gln- and Asn-deamidated peptides can promote the activation and expansion of autoreactive CD4+ T cells. These findings add to the growing evidence that posttranslational modifications undermine tolerance and may open the road for the development of new diagnostic and therapeutic applications for individuals living with type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Linfócitos T CD4-Positivos , Diabetes Mellitus Tipo 1/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ilhotas Pancreáticas/metabolismo , Peptídeos
2.
Cell Oncol (Dordr) ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971644

RESUMO

PURPOSE: TIPRL1 (target of rapamycin signaling pathway regulator-like 1) is a known interactor and inhibitor of protein phosphatases PP2A, PP4 and PP6 - all pleiotropic modulators of the DNA Damage Response (DDR). Here, we investigated the role of TIPRL1 in the radiotherapy (RT) response of Head and Neck Squamous Cell Carcinoma (HNSCC). METHODS: TIPRL1 mRNA (cBioportal) and protein expression (immunohistochemistry) in HNSCC samples were linked with clinical patient data. TIPRL1-depleted HNSCC cells were generated by CRISPR/Cas9 editing, and effects on colony growth, micronuclei formation (microscopy), cell cycle (flow cytometry), DDR signaling (immunoblots) and proteome (mass spectrometry) following RT were assessed. Mass spectrometry was used for TIPRL1 phosphorylation and interactomics analysis in irradiated cells. RESULTS: TIPRL1 expression was increased in tumor versus non-tumor tissue, with high tumoral TIPRL1 expression associating with lower locoregional control and decreased survival of RT-treated patients. TIPRL1 deletion in HNSCC cells resulted in increased RT sensitivity, a faster but prolonged cell cycle arrest, increased micronuclei formation and an altered proteome-wide DDR. Upon irradiation, ATM phosphorylates TIPRL1 at Ser265. A non-phospho Ser265Ala mutant could not rescue the increased radiosensitivity phenotype of TIPRL1-depleted cells. While binding to PP2A-like phosphatases was confirmed, DNA-dependent protein kinase (DNA-PKcs), RAD51 recombinase and nucleosomal histones were identified as novel TIPRL1 interactors. Histone binding, although stimulated by RT, was adversely affected by TIPRL1 Ser265 phosphorylation. CONCLUSIONS: Our findings underscore a clinically relevant role for TIPRL1 and its ATM-dependent phosphorylation in RT resistance through modulation of the DDR, highlighting its potential as a new HNSCC predictive marker and therapeutic target.

4.
Cell Death Discov ; 9(1): 265, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500619

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor in adults. Current standard therapy is surgery followed by radiotherapy, with concurrent and adjuvant temozolomide chemotherapy. GBM is characterized by almost uniformly fatal outcomes, highlighting the unmet clinical need for more efficient, biomarker-guided treatments. Protein phosphatase methylesterase-1 (PME-1), a regulator of the tumor suppressive phosphatase PP2A, promotes PP2A demethylation and inactivation, and is overexpressed in 44% of GBM, associated with increased tumor grade and cellular proliferation. Here, we aimed to investigate how reactive oxygen species (ROS), a frequent by-product of radiotherapy and temozolomide chemotherapy, regulate PP2A function via its methylesterase PME-1, and how PME-1 overexpression impacts the response of GBM cells to oxidative stress. We found that in two glioblastoma cell lines, U87MG and U251MG, expression of PME-1 is positively correlated with the sensitivity of the cells to H2O2 or t-BHP-induced oxidative stress. Experiments using the irreversible pharmacologic PME-1 inhibitor, AMZ30, and different PME-1 mutants, revealed that the methylesterase function, the PP2A binding capacity, and the nuclear localization of PME-1 are all important for the sensitizing effect of PME-1 expression. Furthermore, we identified increased nuclear localization of the PP2A-B55α subunit, increased binding of PP2A-B55α to PME-1, and increased B55α-bound PP2A-C demethylation upon oxidative stress. Lastly, we uncovered increased stress-induced phosphorylation and activity of MAPKAPK2 and RIPK1 in PME-1 overexpressing U87MG cells, which caused the observed sensitization to t-BHP treatment. Our data reveal a novel role for PME-1 in oxidative stress-induced GBM cell death, regulating nuclear PP2A-B55α activity and MAPKAPK2-RIPK1 signaling. Patients with GBM tumors overexpressing PME-1, although having a worse prognosis due to increased cellular proliferation of the tumor, could actually be more responsive to oxidative stress-inducing therapies.

5.
J Autoimmun ; 139: 103056, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37302272

RESUMO

ObjectiveMultiple spliceosome components are known autoantigens in systemic sclerosis (SSc). Here we aim to identify new and characterize rare anti-spliceosomal autoantibodies in patients with SSc without known autoantibody specificity. MethodsSera that precipitated spliceosome subcomplexes, as detected by immunoprecipitation-mass spectrometry (IP-MS), were identified from a database of 106 patients with SSc without known autoantibody specificity. New autoantibody specificities were confirmed with immunoprecipitation-western blot. The IP-MS pattern of new anti-spliceosomal autoantibodies was compared with anti-U1 RNP-positive sera of patients with different systemic autoimmune rheumatic diseases and anti-SmD-positive sera of patients with systemic lupus erythematosus (n = 24). ResultsThe NineTeen Complex (NTC) was identified and confirmed as new spliceosomal autoantigen in one patient with SSc. U5 RNP, as well as additional splicing factors, were precipitated by the serum of another patient with SSc. The IP-MS patterns of anti-NTC and anti-U5 RNP autoantibodies were distinct from those of anti-U1 RNP- and anti-SmD-positive sera. Furthermore, there was no difference in IP-MS patterns between a limited number of anti-U1 RNP-positive sera of patients with different systemic autoimmune rheumatic diseases. ConclusionAnti-NTC autoantibodies are a new anti-spliceosomal autoantibody specificity, here first identified in a patient with SSc. Anti-U5 RNP autoantibodies are a distinct but rare anti-spliceosomal autoantibody specificity. All major spliceosomal subcomplexes have now been described as target of autoantibodies in systemic autoimmune diseases.


Assuntos
Lúpus Eritematoso Sistêmico , Doenças Reumáticas , Escleroderma Sistêmico , Humanos , Autoanticorpos , Spliceossomos/química , Lúpus Eritematoso Sistêmico/diagnóstico , Anticorpos Antinucleares , Autoantígenos
6.
Cells ; 12(9)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37174719

RESUMO

BACKGROUND AND AIMS: Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by a T-cell-mediated destruction of the pancreatic insulin-producing beta cells. A growing body of evidence suggests that abnormalities in neutrophils and neutrophil extracellular trap (NET) formation (NETosis) are associated with T1D pathophysiology. However, little information is available on whether these changes are primary neutrophil defects or related to the environmental signals encountered during active disease. METHODS: In the present work, the NET proteome (NETome) of phorbol 12-myristate 13-acetate (PMA)- and ionomycin-stimulated neutrophils from people with established T1D compared to healthy controls (HC) was studied by proteomic analysis. RESULTS: Levels of NETosis, in addition to plasma levels of pro-inflammatory cytokines and NET markers, were comparable between T1D and HC subjects. However, the T1D NETome was distinct from that of HC in response to both stimuli. Quantitative analysis revealed that the T1D NETome was enriched in proteins belonging to metabolic pathways (i.e., phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and UTP-glucose-1-phosphate uridylyltransferase). Complementary metabolic profiling revealed that the rate of extracellular acidification, an approximate measure for glycolysis, and mitochondrial respiration were similar between T1D and HC neutrophils in response to both stimuli. CONCLUSION: The NETome of people with established T1D was enriched in metabolic proteins without an apparent alteration in the bio-energetic profile or dysregulated NETosis. This may reflect an adaptation mechanism employed by activated T1D neutrophils to avoid impaired glycolysis and consequently excessive or suboptimal NETosis, pivotal in innate immune defence and the resolution of inflammation.


Assuntos
Diabetes Mellitus Tipo 1 , Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteoma/metabolismo , Proteômica , Neutrófilos/metabolismo
7.
J Transl Med ; 21(1): 317, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170215

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a low survival, its incidence is rising and little therapeutic improvements are expected in the near future. It has been observed that Epithelial-to-Mesenchymal transition (EMT) contributes (including in PDAC) to a more aggressive cancer phenotype. Additionally, largely unexplored, studies indicate a mechanistic interplay between Protein Phosphatase Type 2A (PP2A) enzymes and EMT that could offer treatment opportunities. The aim was to investigate the relation of a PP2A expression signature (encompassing all PP2A subunits, endogenous inhibitors and activators) with EMT and aggressive pancreatic cancer, and to discuss possible implications. METHODS: We retrieved different PDAC expression datasets from NCBI to capture the variation in patients, and analyzed these using datamining, survival analysis, differential gene and protein expression. We determined genes highly associated with aggressive PDAC. For in vitro evaluation, Panc-1 cells were treated with the pharmacologic PP2A inhibitor Okadaic Acid (OA). Additionally, two OA-resistant Panc-1 clones were developed and characterized. RESULTS: In patients, there is a strong correlation between EMT and aggressive PDAC, and between aggressive PDAC and PP2A, with a significant upregulation of PP2A inhibitor genes. Several PP2A genes significantly correlated with decreased survival. In vitro, short-term exposure to OA induced EMT in Panc-1 cells. This shift towards EMT was further pronounced in the OA-resistant Panc-1 clones, morphologically and by pathway analysis. Proteomic analysis and gene sequencing showed that the advanced OA-resistant model most resembles the clinical PDAC presentation (with EMT signature, and with several specific PP2A genes upregulated, and others downregulated). CONCLUSIONS: We demonstrated a strong association between EMT, altered PP2A expression and aggressive PDAC in patients. Also, in vitro, PP2A inhibition induces EMT. Overall, statistics suggests the mechanistic importance of PP2A dysregulation for PDAC progression. Translationally, our observations indicate that pharmacologic restoration of PP2A activity could be an attractive therapeutic strategy to block or reverse progression.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteômica , Proliferação de Células/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Transição Epitelial-Mesenquimal/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
8.
Methods Mol Biol ; 2643: 161-181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952185

RESUMO

As the reversible oxidation of protein cysteine thiols is an important mechanism in signal transduction, it is essential to have access to experimental approaches that allow for spatiotemporal indexing of the cellular sulfenome in response to local changes in H2O2 levels. Here, we provide a step-by-step guide for enriching and identifying the sulfenome of mammalian cells at the subcellular level in response to peroxisome-derived H2O2 by the combined use of (i) a previously developed cell line in which peroxisomal H2O2 production can be induced in a time- and dose-dependent manner; (ii) YAP1C, a genetically encoded yeast AP-1-like transcription factor-based probe that specifically reacts with S-sulfenylated cysteines and traps them through mixed disulfide bonds; and (iii) mass spectrometry. Given that this approach includes differential labeling of reduced and reversibly oxidized cysteine residues, it can also provide additional information on the positions of the modified cysteines. Gaining more in-depth insight into the complex nature of how alterations in peroxisomal H2O2 metabolism modulate the cellular sulfenome is key to our understanding of how these organelles act as redox signaling hubs in health and disease.


Assuntos
Cisteína , Peróxido de Hidrogênio , Animais , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxissomos/metabolismo , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Oxirredução , Mamíferos/metabolismo
9.
Front Immunol ; 14: 1050037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895570

RESUMO

Pre-vaccination SARS-CoV-2 infection can boost protection elicited by COVID-19 vaccination and post-vaccination breakthrough SARS-CoV-2 infection can boost existing immunity conferred by COVID-19 vaccination. Such 'hybrid immunity' is effective against SARS-CoV-2 variants. In order to understand 'hybrid immunity' at the molecular level we studied the complementarity determining regions (CDR) of anti-RBD (receptor binding domain) antibodies isolated from individuals with 'hybrid immunity' as well as from 'naive' (not SARS-CoV-2 infected) vaccinated individuals. CDR analysis was done by liquid chromatography/mass spectrometry-mass spectrometry. Principal component analysis and partial least square differential analysis showed that COVID-19 vaccinated people share CDR profiles and that pre-vaccination SARS-CoV-2 infection or breakthrough infection further shape the CDR profile, with a CDR profile in hybrid immunity that clustered away from the CDR profile in vaccinated people without infection. Thus, our results show a CDR profile in hybrid immunity that is distinct from the vaccination-induced CDR profile.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Regiões Determinantes de Complementaridade/genética , Vacinas contra COVID-19
10.
Autoimmun Rev ; 22(4): 103288, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738952

RESUMO

A high prevalence of antinuclear antibodies (ANA) in COVID-19 has been insinuated, but the nature of the target antigens is poorly understood. We studied ANA by indirect immunofluorescence in 229 individuals with COVID-19. The target antigens of high titer ANA (≥1:320) were determined by immunoprecipitation (IP) combined with liquid-chromatography-mass spectrometry (MS). High titer ANA (≥1:320) were found in 14 (6%) of the individuals with COVID-19. Of the 14 COVID-19 cases with high titer ANA, 6 had an underlying autoimmune disease and 5 a malignancy. IP-MS revealed known target antigens associated with autoimmune disease as well as novel autoantigens, including CDK9 (in systemic sclerosis) and RNF20, RCC1 and TRIP13 (in malignancy). The novel autoantigens were confirmed by IP-Western blotting. In conclusion, in depth analysis of the targets of high titer ANA revealed novel autoantigens in systemic sclerosis and in malignant disease.


Assuntos
Doenças Autoimunes , COVID-19 , Neoplasias , Escleroderma Sistêmico , Humanos , Autoanticorpos/análise , Anticorpos Antinucleares , Autoantígenos , Quinase 9 Dependente de Ciclina , Proteínas Nucleares , Proteínas de Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina , ATPases Associadas a Diversas Atividades Celulares
11.
Nat Commun ; 14(1): 1143, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854761

RESUMO

The protein phosphatase 2A (PP2A) heterotrimer PP2A-B56α is a human tumour suppressor. However, the molecular mechanisms inhibiting PP2A-B56α in cancer are poorly understood. Here, we report molecular level details and structural mechanisms of PP2A-B56α inhibition by an oncoprotein CIP2A. Upon direct binding to PP2A-B56α trimer, CIP2A displaces the PP2A-A subunit and thereby hijacks both the B56α, and the catalytic PP2Ac subunit to form a CIP2A-B56α-PP2Ac pseudotrimer. Further, CIP2A competes with B56α substrate binding by blocking the LxxIxE-motif substrate binding pocket on B56α. Relevant to oncogenic activity of CIP2A across human cancers, the N-terminal head domain-mediated interaction with B56α stabilizes CIP2A protein. Functionally, CRISPR/Cas9-mediated single amino acid mutagenesis of the head domain blunted MYC expression and MEK phosphorylation, and abrogated triple-negative breast cancer in vivo tumour growth. Collectively, we discover a unique multi-step hijack and mute protein complex regulation mechanism resulting in tumour suppressor PP2A-B56α inhibition. Further, the results unfold a structural determinant for the oncogenic activity of CIP2A, potentially facilitating therapeutic modulation of CIP2A in cancer and other diseases.


Assuntos
Carcinogênese , Proteína Fosfatase 2 , Processamento de Proteína Pós-Traducional , Neoplasias de Mama Triplo Negativas , Humanos , Aminoácidos , Carcinogênese/genética , Carcinogênese/metabolismo , Domínio Catalítico , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/ultraestrutura , Neoplasias de Mama Triplo Negativas/metabolismo
12.
J Autoimmun ; 135: 102988, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634459

RESUMO

PURPOSE: In up to 20% of patients with systemic sclerosis (SSc) no known autoantibody specificity can be identified. Recently discovered autoantigens, such as telomeric repeat binding factor 1 (TERF1), as well as established autoantigens, like RuvBL1/2, are associated with telomere and telomerase biology. We aimed to identify new telomere- and telomerase-associated autoantigens in patients with SSc without known autoantibody specificity. METHODS: Unlabelled protein immunoprecipitation combined with gel-free liquid chromatography-tandem mass spectrometry (IP-MS) was performed with sera of 106 patients with SSc from two tertiary referral centres that had a nuclear pattern on HEp-2 indirect immunofluorescence without previously identified autoantibody. Telomere- or telomerase-associated proteins or protein complexes precipitated by individual sera were identified. Candidate autoantigens were confirmed through immunoprecipitation-western blot (IP-WB). A custom Luminex xMAP assay for 5 proteins was evaluated with sera from persons with SSc (n = 467), other systemic autoimmune rheumatic diseases (n = 923), non-rheumatic disease controls (n = 187) and healthy controls (n = 199). RESULTS: Eight telomere- and telomerase-associated autoantigens were identified in a total of 11 index patients, including the THO complex (n = 3, all with interstitial lung disease and two with cardiac involvement), telomeric repeat-binding factor 2 (TERF2, n = 1), homeobox-containing protein 1 (HMBOX1, n = 2), regulator of chromosome condensation 1 (RCC1, n = 1), nucleolar and coiled-body phosphoprotein 1 (NOLC1, n = 1), dyskerin (DKC1, n = 1), probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase (NOP2, n = 1) and nuclear valosin-containing protein-like (NVL, n = 2). A Luminex xMAP assay for THO complex subunit 1 (THOC1), TERF2, NOLC1, NOP2 and NVL revealed high reactivity in all index patients, but also in other patients with SSc and disease controls. However, the reactivity by xMAP assay in these other patients was not confirmed by IP-WB. CONCLUSION: IP-MS revealed key telomere- and telomerase-associated proteins and protein complexes as autoantigens in patients with SSc.


Assuntos
Escleroderma Sistêmico , Telomerase , Humanos , Autoantígenos , Telomerase/metabolismo , Autoanticorpos , Telômero , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA
13.
J Med Genet ; 60(5): 511-522, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36216457

RESUMO

BACKGROUND: Variants in PPP2R5D, affecting the regulatory B56δ subunit of protein phosphatase 2A (PP2A), have been identified in individuals with neurodevelopmental abnormalities. However, the molecular and clinical spectra remain incompletely understood. METHODS: Individuals with PPP2R5D variants were enrolled through Simons Variation in Individuals Project/Simons Searchlight. Data were collected from medical history interviews, medical record review, online validated instruments and neuroimaging review. Genetic variants were biochemically characterised. RESULTS: We studied 76 individuals with PPP2R5D variants, including 68 with pathogenic de novo variants, four with a variant of uncertain significance (VUS) and four siblings with a novel dominantly inherited pathogenic variant. Among 13 pathogenic variants, eight were novel and two (p.Glu198Lys and p.Glu200Lys) were highly recurrent. Functional analysis revealed impaired PP2A A/C-subunit binding, decreased short linear interaction motif-dependent substrate binding or both-with the most severe phenotypes associated with variants that completely retained one of these binding characteristics and lost the other-further supporting a dominant-negative disease mechanism. p.Glu198Lys showed the highest C-binding defect and a more severe clinical phenotype. The inherited p.Glu197Gly variant had a mild substrate binding defect, and three of four VUS had no biochemical impact. Common clinical phenotypes were language, intellectual or learning disabilities (80.6%), hypotonia (75.0%), macrocephaly (66.7%), seizures (45.8%) and autism spectrum disorder (26.4%). The mean composite Vineland score was 59.8, and most participants were in the 'moderate to low' and 'low' adaptive levels in all domains. CONCLUSION: Our study delineates the most common features of PPP2R5D-related neurodevelopmental disorders, expands the clinical and molecular spectrum and identifies genotype-phenotype correlations.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtorno do Espectro Autista/genética , Genótipo , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteína Fosfatase 2/genética
14.
Ann Rheum Dis ; 82(4): 546-555, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572507

RESUMO

OBJECTIVES: To discover new and detect known antisynthetase autoantibodies (ASAs) through protein immunoprecipitation combined with gel-free liquid chromatography-tandem mass spectrometry (IP-MS). METHODS: IP-MS was performed using sera of individuals showing features of antisynthetase syndrome (ASyS) without (n=5) and with (n=12) previously detected ASAs, and healthy controls (n=4). New candidate aminoacyl-tRNA-synthetase (ARS) autoantigens identified through unbiased IP-MS were confirmed by IP-western blot. A targeted IP-MS assay for various ASA specificities was developed and validated with sera of patients with known ASAs (n=16), disease controls (n=20) and healthy controls (n=25). The targeted IP-MS assay was applied in an additional cohort of patients with multiple ASyS features or isolated myositis without previously detected ASAs (n=26). RESULTS: Autoantibodies to cytoplasmic cysteinyl-tRNA-synthetase (CARS1) were identified by IP-MS and confirmed by western blot as a new ASA specificity, named anti-Ly, in the serum of a patient with ASyS features. Rare ASAs, such as anti-OJ, anti-Zo and anti-KS, and common ASAs could also be identified by IP-MS. A targeted IP-MS approach for ASA detection was developed and validated. Application of this method in an additional cohort identified an additional patient with anti-OJ autoantibodies that were missed by line and dot immunoassays. DISCUSSION: CARS1 is the dominant cognate ARS autoantigen of the newly discovered anti-Ly ASA specificity. Rare and common ASA specificities could be detected by both unbiased and targeted IP-MS. Unbiased and targeted IP-MS are promising methods for discovery and detection of autoantibodies, especially autoantibodies that target complex autoantigens.


Assuntos
Doenças Pulmonares Intersticiais , Miosite , Humanos , Autoanticorpos , Autoantígenos , RNA de Transferência
15.
Clin Chem Lab Med ; 61(3): 435-441, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36445291

RESUMO

OBJECTIVES: Antinuclear antibodies (ANAs) are associated with several autoimmune diseases. Indirect immunofluorescence (IIF) on human epithelial type 2 (HEp-2) cells is the golden standard for ANA detection in the clinic. In case of a positive HEp-2 IIF test result, follow-up tests are done to determine autoantibody specificity. For a fraction of the HEp-2 IIF-positive samples, the nature of the autoantigens remains uncharacterized. Our objective was to characterize autoantigens in such samples. METHODS: To characterize autoantigens in an unbiased way, we combined protein immunoprecipitation with liquid chromatography (LC) tandem mass spectrometry (MS/MS) sequencing. RESULTS: Using such approach we detected the Ki antigen, also referred to as PA28γ, in the immunoprecipitate of serum samples of three individuals with an autoimmune disease. The HEp-2 nuclear speckled IIF fluorescent signal of all three serum samples was abolished after pre-absorption of the serum with recombinant Ki antigen, confirming that autoantibodies against Ki underlie the HEp-2 IIF signal. CONCLUSIONS: Our data suggest that anti-Ki autoantibodies can underlie a nuclear speckled HEp-2 IIF pattern.


Assuntos
Autoanticorpos , Doenças Autoimunes , Humanos , Técnica Indireta de Fluorescência para Anticorpo/métodos , Espectrometria de Massas em Tandem , Autoantígenos , Anticorpos Antinucleares , Doenças Autoimunes/diagnóstico
16.
Methods Mol Biol ; 2596: 231-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378443

RESUMO

Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. In this chapter, we describe our routine two-dimensional difference gel electrophoresis (2D-DIGE) workflow for analysis of mouse liver tissue in physiological conditions, as well as of mouse HCC. 2D-DIGE still constitutes a valuable comparative proteomics technique, not only providing information on global protein expression in a sample but also on potential posttranslational protein modifications, occurrence of protein degradation fragments, and the existence of protein isoforms. Thus, 2D-DIGE analysis provides highly complementary data to non-gel-based shotgun mass spectrometry (MS) methods (e.g., liquid chromatography (LC)-MS/MS)-allowing, for example, identification of novel protein biomarkers for HCC or increasing insights into the molecular mechanisms underlying hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Eletroforese em Gel Diferencial Bidimensional , Carcinoma Hepatocelular/metabolismo , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neoplasias Hepáticas/metabolismo , Isoformas de Proteínas , Eletroforese em Gel Bidimensional/métodos
17.
Front Immunol ; 13: 977617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451814

RESUMO

Skeletal muscle holds an intrinsic capability of growth and regeneration both in physiological conditions and in case of injury. Chronic muscle illnesses, generally caused by genetic and acquired factors, lead to deconditioning of the skeletal muscle structure and function, and are associated with a significant loss in muscle mass. At the same time, progressive muscle wasting is a hallmark of aging. Given the paracrine properties of myogenic stem cells, extracellular vesicle-derived signals have been studied for their potential implication in both the pathogenesis of degenerative neuromuscular diseases and as a possible therapeutic target. In this study, we screened the content of extracellular vesicles from animal models of muscle hypertrophy and muscle wasting associated with chronic disease and aging. Analysis of the transcriptome, protein cargo, and microRNAs (miRNAs) allowed us to identify a hypertrophic miRNA signature amenable for targeting muscle wasting, consisting of miR-1 and miR-208a. We tested this signature among others in vitro on mesoangioblasts (MABs), vessel-associated adult stem cells, and we observed an increase in the efficiency of myogenic differentiation. Furthermore, injections of miRNA-treated MABs in aged mice resulted in an improvement in skeletal muscle features, such as muscle weight, strength, cross-sectional area, and fibrosis compared to controls. Overall, we provide evidence that the extracellular vesicle-derived miRNA signature we identified enhances the myogenic potential of myogenic stem cells.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , Atrofia Muscular , Células-Tronco , Músculo Esquelético
18.
Front Immunol ; 13: 947071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091045

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain causing either familial or sporadic dementia. We have previously administered the modified C5a receptor agonist (EP67) for a short period to a transgenic mouse model of AD (5XFAD) and have observed not only reduction in ß-amyloid deposition and gliosis but also improvement in cognitive impairment. Inquiring, however, on the effects of EP67 in an already heavily burdened animal, thus representing a more realistic scenario, we treated 6-month-old 5XFAD mice for a period of 14 weeks. We recorded a significant decrease in both fibrillar and pre-fibrillar ß-amyloid as well as remarkable amelioration of cognitive impairment. Following proteomic analysis and pathway association, we postulate that these events are triggered through the upregulation of ß-adrenergic and GABAergic signaling. In summary, our results reveal how inflammatory responses can be employed in inducing tangible phenotype improvements even in advanced stages of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Oligopeptídeos , Receptor da Anafilatoxina C5a , Receptores Adrenérgicos beta , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Proteômica , Receptor da Anafilatoxina C5a/agonistas , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo
19.
Biomed Pharmacother ; 152: 113240, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689862

RESUMO

The protection mediated by the bioactive sphingolipid sphingosine-1-phosphate (S1P) declines during Alzheimer's disease (AD) progression, especially in patients carrying the apolipoprotein E ε4 (APOE4) isoform. The drug FTY720 mimics S1P bioactivity, but its efficacy in treating AD is unclear. Two doses of FTY720 (0.1 mg / kg and 0.5 mg / kg daily) were given by oral gavage for 15 weeks to transgenic mouse models of familial AD carrying human apolipoprotein E (APOE) APOE3 (E3FAD) or APOE4 (E4FAD). After 12 weeks of treatment, animals were subjected to behavioral tests for memory, locomotion, and anxiety. Blood was withdrawn at different time points and brains were collected for sphingolipids analysis by mass spectrometry, gene expression by RT-PCR and Aß quantification by ELISA. We discovered that low levels of S1P in the plasma is associated with a higher probability of failing the memory test and that FTY720 prevents memory impairments in E4FAD. The beneficial effect of FTY720 was induced by a shift of the sphingolipid metabolism in the brain towards a lower production of toxic metabolites, like ceramide d18:1/16:0 and d18:1/22:0, and reduction of amyloid-ß burden and inflammation. In conclusion, we provide further evidence of the druggability of the sphingolipid system in AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/uso terapêutico , Encéfalo/metabolismo , Ceramidas/metabolismo , Modelos Animais de Doenças , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Humanos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Camundongos , Esfingolipídeos/metabolismo
20.
Front Cell Dev Biol ; 10: 888873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557958

RESUMO

The involvement of peroxisomes in cellular hydrogen peroxide (H2O2) metabolism has been a central theme since their first biochemical characterization by Christian de Duve in 1965. While the role of H2O2 substantially changed from an exclusively toxic molecule to a signaling messenger, the regulatory role of peroxisomes in these signaling events is still largely underappreciated. This is mainly because the number of known protein targets of peroxisome-derived H2O2 is rather limited and testing of specific targets is predominantly based on knowledge previously gathered in related fields of research. To gain a broader and more systematic insight into the role of peroxisomes in redox signaling, new approaches are urgently needed. In this study, we have combined a previously developed Flp-In T-REx 293 cell system in which peroxisomal H2O2 production can be modulated with a yeast AP-1-like-based sulfenome mining strategy to inventory protein thiol targets of peroxisome-derived H2O2 in different subcellular compartments. By using this approach, we identified more than 400 targets of peroxisome-derived H2O2 in peroxisomes, the cytosol, and mitochondria. We also observed that the sulfenylation kinetics profiles of key targets belonging to different protein families (e.g., peroxiredoxins, annexins, and tubulins) can vary considerably. In addition, we obtained compelling but indirect evidence that peroxisome-derived H2O2 may oxidize at least some of its targets (e.g., transcription factors) through a redox relay mechanism. In conclusion, given that sulfenic acids function as key intermediates in H2O2 signaling, the findings presented in this study provide valuable insight into how peroxisomes may be integrated into the cellular H2O2 signaling network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...